High-Reynolds-number weakly stratified flow past an obstacle
نویسندگان
چکیده
منابع مشابه
Linear drag law for high-Reynolds-number flow past an oscillating body
the problem in order to investigate the fluid mechanical consequences of combined dc and ac motions. Specifically, we will vary the relative magnitudes of the (time-averaged) ac speed w and the dc speed U in order to explore a range of fluid dynamic conditions, from purely steady to strongly unsteady. For dc-dominated conditions, one expects that local flows generated in one oscillation are lef...
متن کاملFlow of foam past an elliptical obstacle.
To investigate the link between discrete small-scale and continuous large scale mechanical properties of a foam, we observe its two-dimensional flow in a channel, around an elliptical obstacle. We measure the drag, lift, and torque acting on the ellipse versus the angle between its major axis and the flow direction. The drag increases with the spanwise dimension, in marked contrast with a squar...
متن کاملReynolds number effects in stratified turbulent wakes
We report large-eddy simulations of the turbulent wake of a towed-sphere of diameter D at speed U in a linearly stratified Boussinesq fluid with buoyancy frequency N . These simulations are performed using a spectral-multidomain-penalty-method-based incompressible Navier-Stokes solver for Re ≡ UD/ν ∈ {5 × 10, 10, 4 × 10} and Fr ≡ 2U/(ND) ∈ {4, 16, 64}. Increasingly richer turbulent fine structu...
متن کاملHigh Reynolds Viscous Flow Simulation Past the Elliptical Airfoil by Random Vortex Blob
In this paper, numerical simulation for a two-dimensional viscous and incompressible flow past the elliptical airfoil is presented by Random Vortex Blob (RVB). RVB is a numerical technique to solve the incompressible, two-dimensional and unsteady Navier-Stocks equations by converting them to rotational non-primitive formulations. In this method, the velocity vector at a certain point can be cal...
متن کاملSurface-sampled simulations of turbulent flow at high Reynolds number
Funding information European Commission Horizon 2020, Grant/Award Number: 671571; Engineering and Physical Sciences Research Council (EPSRC), Grant/Award Number: EP/L000261/1 Summary A new approach to turbulence simulation, based on a combination of large eddy simulation (LES) for the whole flow and an array of non–space-filling quasi-direct numerical simulations (QDNS), which sample the respon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 1996
ISSN: 0022-1120,1469-7645
DOI: 10.1017/s0022112096000705